{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import random\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 142, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "could not convert string to float: '1.5 总获利'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 14\u001b[0m \u001b[0msell\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfloat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mline\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mindex_spa\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 15\u001b[0m \u001b[1;31m#print(index_bchl,index_spa2)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 16\u001b[1;33m \u001b[0mprofit\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfloat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mline\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mindex_bchl\u001b[0m\u001b[1;33m+\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m:\u001b[0m\u001b[0mindex_spa2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 17\u001b[0m \u001b[0mbuy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msell\u001b[0m\u001b[1;33m-\u001b[0m\u001b[0mprofit\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[0mvalue\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mvalue\u001b[0m\u001b[1;33m*\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msell\u001b[0m\u001b[1;33m/\u001b[0m\u001b[0mbuy\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m0.002\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mValueError\u001b[0m: could not convert string to float: '1.5 总获利'" ] } ], "source": [ "df2=pd.DataFrame(columns=['i','value'])\n", "df3=pd.DataFrame(columns=['year','value'])\n", "f = open('C:/Users/lenovo/Desktop/000338-3.txt')\n", "i=0\n", "value=100\n", "year=2000\n", "for line in f.readlines():\n", " index_spa=line.find(' ',3)\n", " index_bchl=line.find('本次获利')\n", " index_spa2=line.find(' ',index_bchl+6)\n", " index_zhl=line.find('总获利')\n", " index_year=line.find(' ',index_zhl+5)+1\n", " if index_bchl>0:\n", " sell=float(line[3:index_spa])\n", " #print(index_bchl,index_spa2)\n", " profit=float(line[index_bchl+5:index_spa2])\n", " buy=sell-profit\n", " value=value*(sell/buy-0.002)\n", " i+=1\n", " df2=df2.append({'i':i, 'value':value},ignore_index=True)\n", " if year!=line[index_year:index_year+4]:\n", " df3=df3.append({'year':int(line[index_year:index_year+4]), 'value':value},ignore_index=True) \n", " year=line[index_year:index_year+4]\n", "df3=df3.append({'year':2020, 'value':value},ignore_index=True) \n", "f.close()\n", "print(value)\n", "df2.plot(x='i',y='value',figsize=(16,3))\n", "df3.plot(x='year',y='value',figsize=(16,3))" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4.39999999999999" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "float('4.39999999999999')" ] } ], "metadata": { "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }